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Abstract—The degree of polarization for propagation waves in aniso-
tropic single-mode fibers is formulated in terms of light source spec-
trum, incident polarization condition, and fiber parameters. The
polarization: degree. deterioration is based on the incident wave split
into two eigenpolarization modes inherent in the fiber. Since the two
eigenpolarization modes have different group velocities from each
other, the degree of polarization is degraded when both of the modes
are excited. Polarization degree is preserved when only one of the eigen-
polarization modes is excited. The degradation is determined by the
mutual correlation function v, between the two modes, which depends
on the light source spectra, fiber polarization dispersion, and fiber

length.

I. INTRODUCTION

RESERVATION of the optical polarized state in fibers is
Pessential to realize coherent optical transmission using the
frequency or phase shift keying and heterodyne detection
scheme [1}. Fibers which preserve linear polarization have
conventionally been studied by many researchers [2], [3].
Recently, a proposal has been made to transmit a circularly
polarized light in a twisted single-mode fiber [4]. These works
seem to be based on an idea that incident polarized light should
be transmitted without polarization conversion.

The state of incident polarization may -be changed by a
scattering process, external mechanical stresses, ambient
changes, and other causes. The apparent degradation in the
degree of polarization can be recovered by adjusting retarda-
tion at the fiber output [5]. Only intrinsic degradation re-
mains after ideal phase compensation is carried out. It has
been shown that proper incident polarization states exist which
preserve a high degree of polarization [6], [7]. Polarization
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mode dispersion has been discussed to explain the polarization
degree degradation for linear polarization inc¢idence [8].

The purpose of this paper is to formulate the inherent polari-
zation degree in anisotropic single-mode optical fibers. The
degradation mechanism is based on an assumption that any
incident polarization state is split into two orthogonal eigen-
polarization modes [7], which propagate at different group
velocity values. The degree of polarization depends on a
mutual correlation - function “between .two eigenpolarization
modes.

Section II explains properties of the eigenpolarization modes
which play an important role in preserving the degree of polar-
ization. The mathematical definition of the eigenpolariza-
tions, their physical features, their vector expressions, and
expansion using them are presented. Section III provides the
degree of polarization in terms of light source spectrum and
fiber parameters by using a coherency matrix. The degree of
polarization is compared with several source spectral pro-
files. In Section IV, the eigenpolarization modes and the
polarization degree are described for a twisted elliptical core
fiber, as an example of anisotropic single-mode fibers.

II. EIGENPOLARIZATION MODES IN ANISOTROPIC:
SINGLE-MODE FIBERS

A. Definition of Figenpolarization Modes

Polarization evolution in anisotropic . single-mode: fibers has
been treated by means of the modified coupled-mode equa-
tions containing coupling coefficients V;; [9]. Eigenpolariza-
tion modes correspond to eigenstates with particular shapes
and propagation constants, independent of propagation length
z, as have been theoretically investigated [10]. A mathemati-
cal- outline of the eigenpolarization modes will be briefl
described. , ‘

Electric ﬁelds in anisotropic single-mode fibers can be repre-
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sented as E=A(z)e, + B(z)e, with two orthonormalized
eigenfunctions e, and e,. When coupling coefficients N;; are
independent of z in a particular coordinate system, the field
amplitudes A(z) and B(z) can be expressed by 4(z) =A4; exp
(-7B;z) and B(z) = B; exp (-7B;2), where

B;= (%) [(W1s + Naz) £ {(Vyy - Npo ) + 128 7}12]

(i=1,2) (1)
and
B; _ 2Ny,
A; Ny - Npp) £ {1y - Naz)* +[2Np P}
(i=1,2). 2)

The index i=1 (i = 2) corresponds to the upper (lower) sign
in (1) and (2). The 8; and B;/A; indicate mathematical eigen-
values and eigenfunctions, respectively. It has been shown
that the eigenstate has a physical significance incorporated
with polarization behavior [7]. These eigenstates will be called
eigenpolarization modes hereafter. Birefringence 8§ or prop-
agation constant difference betwen the two eigenpolarization
modes is defined by ‘

86=F; - B2 = [(N1y - Np2)* +12Np P12, 3)

B. Complex Representation of Eigenpolarization Modes

Assume that coupling coefficients Ny, and NV,, are real, and
Ny, is a complex value defined by Ny, =N, +jN;. The states
of two eigenpolarizations are represented as

1 =E ting =EiylEix = (& +01)Y? exp (j8y)
and
$2 =8 +jny =By lEyy = (85 +n3)% exp [j(8, +m)]
“)
with
tan 8, =ny/E1 =M /E2 = Ni/N,.

Here, the E;, and E;, are electric components in Cartesian
coordinate.

Fig. 1 illustrates the shape of two eigenpolarization modes
schematically. It can be found that two major axis angles Y; of
the polarization ellipses satisfy

Yy =Yy tm(nf2) Q)

with the help of the standard text {11] and (4). This implies
that the principal axes of two eigenpolarization ellipses are
parallel or perpendicular to each other. Ellipticity of the
polarization is defined by the ratio of the semiaxes as

(m: integer)

tany; = b;la; (i=1,2). (6)
For two eigenpolarization ellipticities one obtains
tany, =-1/tanx1 . M

The minus sign indicates that two eigenpolarizations rotate in
opposite directions. The inverse relation between two polari-
zation ellipticities means that the major axes of the two polari-
zations are perpendicular to each other.

In summary, two eigenpolarization modes, which belong to
different eigenvalues, have the following features. 1) Elliptici-
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Fig. 1. Schematics of two eigenpolarization modes. a; and b; denote
the semimajor and semiminor axis lengths, respectively. ¢; indicates
the orientation of major axis for each polarization ellipse with respect
to the fixed x axis.

ties of two eigenpolarizations are identical with each other.
2) The major axes of the polarization ellipses are mutually per-
pendicular. 3) The endpoints of their electric vectors rotate
oppositely. 4) Ellipticity of the eigenpolarization modes de-
pends on perturbations applied to the single-mode fiber [10].

C. Vector Representation for Eigenpolarization Modes

Let the unit vectors along the fixed x and y axes be e, and
e, respectively. A pair of vectors for eigenpolarization modes
are represented by

e, =Xe, t7Ye,

e, =-Y¥e, + X%, 6]
where
Y=X(& +n1)"? exp (j&:1)
1X]=1/[1+(& +aD]/>. )
Here, each vector ¢; is normalized so as to satisfy
le;? =|X]> +|Y[* =1 (10)

and fulfills an orthogonal relation: e; - €5 =0 and e} - ¢, = 0.
The asterisk indicates complex conjugation.

D. Expansion of Elliptically Polarized Light in Terms of
Eigenpolarization Modes

An arbitrary incident elliptically polarized light ¥ is expanded
into a pertinent combination of two eigenpolarization mode
vectors e; and e,. This can be shown as

E=F,e; tEe,,
=(E, X -E; Y¥e, +(E, Y +E,X%)e, (11)

where £, and E, stand for the expansion coefficients. Inci-
dent polarization components can be expressed by

E,|E, = (tan &) exp (j8). (12)

Here, tan « is the incident field component ratio and § is the
phase difference. Comparison of (12) with (11) leads to

| X2 +|YI? tan® a + 2 Re [XY* (tan ) exp (j8)]

E =

B:l *1+tan® a

B, = [Y]? +|X|? tan® a - 2 Re [XY ™ (tan ) exp (j5)]
2 1 +tan® &

(13)

where Re indicates that the real part of the square bracket is
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to be taken. The incident light power is normalized to satisfy
|E? =1,

Polarization ellipticity x and major axis angle ¢ for the po-
larization ellipse are suitable parameters for relating to experi-
mental data. Parameters o and & presented in (12) are related
with x and { as

|1/cos 2y - Icos2x|]1/2
= 1 14
* arcan[ll/cos21}1|+|cos2xl a4
jcos 2x/cos 2|2 - |cos 2x|?
5= 15
arccos[ [1/cos 247 - |cos 2x 2 (15

by solving usual results [11] reversely. For linear polarization
incidence, namely x =0, « is reduced to linear polarization
angle  with respect to the x axis.

III. DEGREE OF POLARIZATION

The mechanism explaining degradation in the degree of po-
larization will be outlined first. An arbitrary incident elliptical
polarization is expanded into a proper combination of two
eigenpolarization modes, as shown in (11). The two eigen-
polarization modes propagate at different group velocities
from each other. Even when the ideal phase compensation is
carried out at the fiber output, the two eigenpolarizations
cannot be made a linear polarization at the same time, giving
rise to a spurious orthogonal polarization component.

The degree of polarization P is defined by the ratio of polar-
ized component intensity I, to total intensity Iio¢. The de-
gree of polarization can be expressed, with the aid of coherency
matrix J, as [11]

P=Ipol/1tot =1 (16)

Here, det and tr denote the determinant and trace, respectively.
The degree of polarization is lndependent of choice of coordi-
nate system, since det J and tr J remain unchanged with re-
spect to a transformation in coordinates. Coherency matrix

J is defined by
Tegs Jgn)
Jné»"nn

=(F-ETy= (

where § and 7 represent the components for an arbitrary co-
ordinate system. The dagger indicates Hermitian transpose
and the angle bracket implies time average. When a field is
stationary and ergodic, the ensemble average is replaced by the
time average. The field components of E can be represented in
terms of a complex analytic signal [11]. Analytic signal V()
is expressed as

- 4 (det J)/(tr T )2 Y2,

(17)

V(t)=2j v(w) exp (jwi) dw. (18)

Amplitude spectrum v(w) is represented, by means of Fourier
transform, as

b(w) = L V() exp (-jwn)dt;  wz0 19)

0; w<0.

The incident light is assumed to be quasi-monochromatic.
Column vector E, of incident light can be represented by
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Voe (2)

E, = 20

° (Von (r)) 9

with
1 ® .
Vog'(t)=(1-i-’wu'1—2a)l/22J; v(w) exp (jwi) dw
al /& =

Vou (1) = %—’l% 2 [ v(w) exp (jwt) dew. 21)

Here, tan « stands for the field amplitude ratio of n to £ com-
ponents and § denotes the phase difference. The factor 1/(1 +
tan® @)Y/2 is introduced to normalize the incident light power.
Input light power I, can be evaluated as

Io=tr(Ey "EJ)=S, 22)
with
So EZf [v(w)|? dw. 23)
4]

In deriving (23), (18), (19), and (21) were employed.

Any incident elliptically polarized light E;, is split into two
eigenpolarization mode vectors, €; and e,, as shown in (11).
The envelope of the fields is essential to explain the polariza-
tion degree deterioration. The vector components for two
eigenpolarization modes can be written as

) ) e
where
e e(t)=X -2 J:o v(w)
“exp [j(w - wo) {7 - (dfy/dw)z}] dow
ein () = Y'2£w v(w)
“exp [/(w - wo) {1 - (dBy/dw)z}] dew
e()=-Y*-2 fow v(w)
~exp [j(w ~ wp) {t - (dBa /dw)z}] dow
(D) =X*-2 j;m v(w)
mexp [j(w - wp) {t - (df, /dw)z}] do. (25)

Here, X and Y are the field components of the mode 1, as
shown in (9). The 8;(w) indicates propagation constant for
each mode. It is assumed that the spectral spread of the light
source is sufficiently smaller than central angular frequency
wq. Assuming that total optical power is preserved, even after
splitting into two eigenpolarization modes, one obtains

|E, > +1E, P = 1. (26)
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Here, the power immediately after incidence on the fiber was
evaluated by using eigenpolarization mode components in
(25) with z=0 and employing a normalization relation in

(10).
The coherency matrix elements at the fiber output can be
represented by

Jgg =<|Elelg +E2€2£l2>

Jnn =\ Eyeyn + Eyeyn®)

JE"’I =J7";E Z((El €t +E2€2£) (El €in +E2€2n)*). (27)
Fiber output optical power I can be presented by
I=tr] =S, (28)

by making use of (10) and (26). The optical power is also con-
served at the fiber output. The detJ at the output is obtained
as

detd =(So - IS11*) |E, 1B, P (29)
with
S EZf lo(w)I? exp [j(w - wo)87,z] dw. (30)
0

Here, §7, stands for the polarization dispersion or the group
delay difference between two eigenpolarization modes and is
defined by

E2Y)

In the above equation, ¢ is the light velocity in free space, £ is
the vacuum wave number, and 88 is the birefringence defined
by (3). Parameter §; depends on the light source spectral
distribution, fiber polarization dispersion, and fiber length.

The degree of polarization for anisotropic single-mode fibers
is obtained, by substitution of (28) and (29) into (16), as

P=[1-(1- [y[*) 4B, PIE 1)) Y2 (32)
with
Y=S51/80. 33)

In (32), (41£,1*|E;1*) and |y| depend on the incident condi-
tion and light source coherency, respectively. When only one
eigenpolarization mode is excited at the fiber input, the de-
gree of polarization P=1 is always maintained during fiber
propagation under idealized conditions. This is due to the fact
that autocorrelation functions for each eigenpolarization
mode satisfy

*
I/y(i) , - <ei$ ein)
0] e I (e 1)

Coherency is perfectly kept between intramodal components

=1 (i=1,2). (34)
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On the other hand, the degree of polarization P takes the
minimum value }y| for equally split powers: |E,|* = |E,|* =

0.5. For mutual correlation functions between two eigen-
polarization modes
(e g1 %))
AtIALY, .
T amieom| @D 39)
{8 i)

holds. Here, { } implies either of the components is to be
chosen. When absolute value of the mutual correlation func-
tion approaches unity, the degree of polarization also tends
toward unity.

Mutual correlation function v is connected with the light
source spectral intensity |v(w)|*> by Fourier transform, as can
be found from (30). The v value is given by

v =sin (8w 87 - 2)/(Sw - 874 - 2) (36)

for a rectangular source spectrum with spectral width 26w and
central angular frequency w,. This functional form is the
same presented by Rashleigh er al. [8]. Let 2 - §w be the full
width at half the maximum intensity, hereafter. The condi-
tion wy > 6w is assumed throughout this paper. Fora Gauss-
jan spectrum defined by |v(w)l® =exp [-(In 2){(w - wo)/
8w}?], whose profile has been observed in a gas laser [12],
we have

B 8w - 87y Z\?
LR NN v
For a Lorentzian spectrum defined by |v(w)|?® = §w?/[(w -

wo)? +8w?], whose line shape has been demonstrated in a
semiconductor laser [13],
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y=exp [-(6w - 87, - 2)] (38)

is obtained. These three kinds of v are real values depending
on the product 8w - 87, - z alone. ‘

Fig. 2 compares with the mutual correlation function values
for the above three shapes with a single spectral peak. In the
neighborhood of x = 68w * 874 * 2 = 0, a high coherency is kept
for rectangular and Gaussian spectra, but a rapid degradation
in coherency appears for a Lorentzian shape. Values of x
giving v = 0.9 are 0.79, 0.54, and 0.11, respectively, for rec-
tangular, Gaussian, and Lorentzian shapes, For example, x =
0.001 is obtained for §w =1 GHz, 874 =1 ps/km, and z =1
km.

Consider a light source which has two spectral intensity peaks
with central frequency spacing w, and peak intensity ratio /.
When a spectral distribution is represented by addition of
Gaussian functions: [v(w)|? = exp [-(In 2) {(w - wo)/8w;}?]
+ 1, exp [-(In 2) {(w - wo - wg)/8w,}?] with the spectral
half widths, §w; and 8w, , the mutual correlation function is
given by

of one eigenpolarization mode.

YT PRF AL 8wy - 071, -2 \? .
) Sw,; exp |- ——2——\/?2——— +1, 8w, exp |- —m—— exp (jwg - 874 - 2)

8(.01 +IS . 8(02

(39)

When Lorentzian shapes are prescribed as |v(w)l® =8w?/
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Fig. 4. Polarization ellipticity of eigenpolarization modes in twisted
elliptical core fibers. k., and ¢, denote the core ellipticity effect and
fiber twist rate, respectively. a = GC/n = 0.074.

Vector components for the eigenpolarization modes, cor-
responding to (9), can be described as

= [ke + {K2 + @ - k) 21N,
Y =j(¢; - k)N,
Np =2 [KF + (e~ k) +ke{rZ + (@ - AR RES
(43)
The optical powers for ¢ and n components are given by Py =

|X|?> and P, =|Y[*>. For a sufficiently small twist rate, these
powers are approximated by

Py = 1-(3) @4/ke)* {1 - (GC/n)}?
Py =(3) (9:/ke)* {1 - (GC/m)}? ($e/ke < 1)

to the second order in (¢;/k.). On the other hand, when the
twist rate ¢, is much larger than k,,

Py =(3) [1+{1 +(GC/M}($:/xe)]
Py () [1- {1+ (GC/m}(s/ke)]

hold to the second order in (k. /¢,).

Fig. 6 illustrates optical powers for & and n components as
functions of the ratio ¢./k,. PS = (0.946 is obtained even
when ¢,/k, = 0.5, since eigenpolarization modes are approxi-
mated with linear polarizations for ¢;/k, <& 1. When fiber
twist rate ¢, by far exceeds k., optical powers of eigenpolari-
zation modes are distributed almost equally in the & and 5
axes. Approximate values given in (44) show a relative error
of about 1 percent at ¢,/«, = 0.5, while those in (45) produce
an about 4 percent error at ¢,./k, = 2.

Polarization dispersion is obtained as [9], [15]

87g =874 [k {K + (8, - kY7

ke  (d[dv) [vG(v)]
ck G(v)

(44)

($e/ke >>1) (45)

575 = (46)
Polarization dispersion 57}‘?) indicates a parameter caused by
the core ellipticity effect alone. Polarization dispersion &7,
tends towards zero with increasing twist rate ¢; because the
birefringence due to fiber twist hardly depends on the wave-
length.
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Fig. 5. Polarization evolution of eigenpolarization modes classified by
the magnitude of core ellipticity effect «, and fiber twist rate ¢;.
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Fig. 6. Optical power distributed along rotation coordinates, ¢ and n,

for eigenpolarization mode. Broken curves indicate approximate
values given in (44) and (45). a = GC/rn = 0.074.

When elliptically polarized light, represented by E,/E; =
(tan &) exp (j8), is incident on the fiber, expansion coeffi-
cients for two eigenpolarization modes are given by

X2 +|YP tan®? a+2X|Y|tan o - sin &

E?=
1] 1 +tan? o
2+ 2 Y
B, = 1Y+ X% tan® o - 2.X| Itana sm6 @7
1+tan® o

The component power ratio depends on the incident polarlzed
state and ratio (¢,/K.).

The degree of polarization can be obtained by inserting (43),
(46), and (47) into (32). Fig. 7(a) and (b) show the degree of
polarization P for linearly and circularly polarized light excita-
tions, respectively. This figure illustrates the value of P for
three kinds of light source spectral functions, presented in
(36)-(38). For the linear polarization excitation, P takes the
minimum value near a particular ratio ¢,/x, and is raised to
P =1 with leaving its minimum value. The ratio ¢,/k, giving
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Fig. 4. Polarization ellipticity of eigenpolarization modes in twisted
elliptical core fibers. «x, and ¢, denote the core ellipticity effect and
fiber twist rate, respectively. a = GC/n = 0.074.

Vector components for the eigenpolarization modes, cor-
responding to (9), can be described as

X = e+ {kZ + @~ kY2 1IN,
Y =j(9: - k)N
Np =2 [kZ + @~ ko) +kelkl + @~ )"},
(43)
The optical powers for £ and n components are given by Py =

|X|* and P, =|Y[>. For a sufficiently small twist rate, these
powers are approximated by

Py=1-(3) (9:/ke)* {1 - (GCm)}?
Py = () (9:/ke)* {1 - (GC/m)}* ($e/ke <1)  (44)

to the second order in (¢4/k.). On the other hand, when the
twist rate ¢, is much larger than k.,

Py =) [1+ {1 +(GC/m)}(@/k,)]
Py (3 [1- {1 +(GC/m}(9e/ke)]

hold to the second order in (k. /¢;).

Fig. 6 illustrates optical powers for £ and n components as
functions of the ratio ¢/k.. P =20.946 is obtained even
when ¢,/k, = 0.5, since eigenpolarization modes are approxi-
mated with linear polarizations for ¢,/k, << 1. When fiber
twist rate ¢, by far exceeds k., optical powers of eigenpolari-
zation modes are distributed almost equally in the & and 7
axes. Approximate values given in (44) show a relative error
of about 1 percent at ¢,/k, = 0.5, while those in (45) produce
an about 4 percent error at /K, = 2.

Polarization dispersion is obtained as [9], [15]

87g =87 [ke/ (k2 + (8 - k) }?]

ke (dfdv) [vG ()]
ck G(v)

(Pe/ke >1) (45)

8788 = (46)
Polarization dispersion 81&?) indicates a parameter caused by
the core ellipticity effect alone. Polarization dispersion &7,
tends towards zero with increasing twist rate ¢; because the
birefringence due to fiber twist hardly depends on the wave-
length.
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Fig. 5. Polarization evolution of eigenpolarization modes classified by
the magnitude of core ellipticity effect x, and fiber twist rate ¢;.
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Fig. 6. Optical power distributed along rotation coordinates, ¢ and n,
for eigenpolarization mode. Broken curves indicate approximate
values given in (44) and (45). a = GC/n = 0.074.

When elliptically polarized light, represented by E,/Ey =
(tan o) exp (j§), is incident on the fiber, expansion coeffi-
cients for two eigenpolarization modes are given by

X2 4+ |YP tan? a+2X|Y|tan o - sin &

Byl =
£l 1+ tan* «
JYPP + X% tan® o - 2X|Y|tana - sin &
2 =
£ | 1 +tan® @ ' 47

The component power ratio depends on the incident polarized
state and ratio (¢,/k,).

The degree of polarization can be obtained by inserting (43),
(46), and (47) into (32). Fig. 7(a) and (b) show the degree of
polarization P for linearly and circularly polarized light excita-
tions, respectively, This figure illustrates the value of P for
three kinds of light source spectral functions, presented in
(36)-(38). For the linear polarization excitation, P takes the
minimum value near a particular ratio ¢,/k. and is raised to
P =1 with leaving its minimum value. The ratio ¢,/k. giving
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Flg 7. Degree of polarization for linear-and circular polarization inci-
dences as 4 function of the ratio ¢4/ke. Spectral functions are pre-
sented in (36)-(38). a=GC/n=0.074. (a) Linearly polarized light
incidence. (b) Circularly polarized light incidence.

the minimum P increases with a parameter §w ’5'Tée) rz, Af
the spectral haifwidth 8 is identical for the three spectral
shapes, the rectangular shape shows a larger P value than the
Gaussian and Lorentzian shapes.

When circular polarization is launched, as shown in Fig. 7(b),
the P value increases monotonically with ratio ¢,/k.. The
tendency of the P value for the three spectral shapes is similar
to that in Fig. 7(a). When the fiber twist effect predominates
over the core ellipticity effect, the P value tends toward unity
for any incident polarized state.

The achievement of P=1 appears near ¢,/k, =0 for the
linear polarization incidence and at a sufficiently large ¢,/x,
for the circular polarization, as shown in Fig. 7(a) and (b).
This phenomena can be explained by the fact that the eigen-
polarization modes are linear polarizations for an untwisted
fiber and are circular polarizations for a strongly twisted fiber.
The convergence to P =1 at large ¢;/k. reflects that polariza-
tion dispersion 87,, between the two eigenpolarization modes,
approaches zero with increasing ¢,/k.. The lower P value for
Lorentzian spectral shape results from the fact that the Lo-
rentzian shape shows a large tail in the optical frequency
domain.
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Fig. 8. Degree of polarization in an elliptical core fiber as functions of
mutual correlation function v and incident polarized state.

In particular, the degree of polarization in an elliptically
deformed core fiber can be represented as

=[1-(1- [y[*)sin? (20)] /2

for-an incident condition given in (12). Equation (48) implies
that the P.depends on incident electric component ratio tan o
but not on phase difference §. Fig. 8 shows the degree of
polarization as functions of the mutual correlation function y
and incident polarized state. The P value takes the minimum
value, which equals [y|, ata = 45°,

For linear polarization incidence, « agrees with lineat polar1—
zation angle Y with respect to the x axis. When incident light
is linearly polarized along the x or y axis, namely ¢ = 0° or

(48)

©90°, degree of polarization P =1 is always preserved, in spite

of incident light spectral shape, polarization dispersion, and
fiber length. This fact is the basis of usual single-polarization
maintaining fibers, which have asymmetrical index profiles and
are uniaxially stressed. When a linear poldrization, with its
orientation ; = 45°, is incident on a fiber and light source
spectral shape is rectangular, (48) reduces to the previous
result, [8].

Equation (48) holds not only for an elliptical core flber but
also for a general linear retardation fiber, if polarization disper-
sion is appropriately chosen for each fiber.

V. CONCLUSION

The degree of polarization in anisotropic single-mode optical
fibers has been formulated in terms of light source spectrum
and fiber parameters with the aid of a coherency matrix. The
deterioration mechanism in the polarization degree is based on
the assumption that an. arbitrary incident polarized light is
split into two separate eigenpolarization modes, which propa-
gate at different group velocity values.

When only one of the eigenpolarization modes is launched
at the fiber input, degree of polarization P=1 is always
achieved. On the other hand, when equal power is excited
in two eigenpolarization modes, the degree of polarization
is minimized. The minimum value depends on mutual correla-
tion function y=S51/S, between the two eigenpolarization
modes. The v depends on light source spectrdl shape, fiber
polarization - dispersion 87, and fiber length z. Usually, the
degree of polarization P is kept high for rectangilar and Gauss-
ian spectral functions, whereas P is rapidly reduced for a
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Lorentzian shape, provided that the spectral halfwidths are
identical.

The eigenpolarization modes and the degree of polarization
for a twisted elliptical core fiber have been studied as an
example of anisotropic fibers. Ellipticity and principal axis
orientation for the eigenpolarizations aie determined by the
fiber core ellipticity and twist rate. When a sufficiently large
twist is applied, the degree of polarization amounts to unity
for any incident polarized state. This is due to the polariza-
tion dispersion, between the two eigenpolarization modes,
tending toward zero with increasing fiber twist.
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