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Degree of Polarization in Anisotropic Single-Mode
Optical Fibers: Theory
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Abstract-The degree of polarization for propagation waves in aniso-

tropic single-mode fibers is formulated in terms of light source spec-
trum, incident polarization condition, and fiber parameters. The
polarization degree deterioration is based on the incident wave split

into two eigenpolarization modes inherent in the fiber. Since the two

eigenpolarization modes have different group velocities from each

other, the degree of polarization is degraded when both of the modes

are excited. Polarization degree is preserved when only one of the eigen-

polarization modes is excited. The degradation is determined by the

mutuat correlation function -y, between the two modes, which depends
on the light source spectra, fiber polarization dispersion, and fiber
length.

I. INTRODUCTION

PRESERVATION of the optical polarized state in fibers is

essential to realize coherent optical transmission using the

frequency or phase shift keying and heterodyne detection

scheme [1]. Fibers which preserve linear polarization have

conventionally been studied by many researchers [2], [3].

Recently, a proposal has been made to transmit a circularly

polarized light in a twisted single-mode fiber [4]. These works

seem to be based on an idea that incident polarized light should

be transmitted without polarization conversion.

The state of incident polarization may be changed by a

scattering process, external mechanical stresses, ambient

changes, and other causes. The apparent degradation in the

degree of polarization can be recovered by adjusting retarda-

tion at the fiber output [5]. Only intrinsic degradation re-

mains after ideal phase compensation is carried out. It has

been shown that proper incident polarization states exist which

preserve a hi~ degree of polarization [6], [7]. Polarization

Manuscript receivedAugust 31, 1981; revisedNovember 16, 1981.
The authors are with the Electrical Communication Laboratories,

Nippon Telegraph and Telephone Public Corporation, Musashino-shi,
Tokyo, Japan.

TATSUYA KIMURA, SENIOR MEMBER, IEEE

mode dispersion has been discussed to explain the polarization

degree degradation for linear polarization incidence [8] .

The purpose of this paper is to formulate the inherent polari-

zation degree in anisotropic single-mode optical fibers. The

degradation mechanism is based on an assumption that any

incident polarization state is split into two orthogonal eigen-

polarization modes [7], which propagate at different group

velocity values. The degree of polarization depends on a

mutual correlation function between two eigenpolarization

modes.

Section II explains properties of the eigenpolarization modes

which play an important role in preserving the degree of polar-

ization. The mathematical definition of the eigenpolariza-

tions, their physical features, their vector expressions, and

expansion using them are presented. Section III provides the

degree of polarization in terms of light source spectrum and

fiber parameters by using a coherency matrix.’ The degree of

polarization is compared with several source spectral pro-

files. In Section IV, the eigenpolarization modes and the
polarization degree are described for a twisted elliptical core

fiber, as an example of anisotropic single-mode fibers.

II. EIGENPOLARIZATION MODES IN ANISOTROPIC

SrNGLE-kiODE FIBERS

A. Definition of Eigenpolarization Modes

Polarization evolution in anisotropic single-mode fibers has

been treated by means of the modified coupled-mode equa-

tions containing coupling coefficients iVij [9]. Eigenpolariza-

tion modes correspond to eigenstates with particular shapes

and propagation constants, independent of propagation length

z, as have been theoretically investigated [ 10] . A mathemati-

cal outline of the eigenpolarization modes will be briefly

described.

Electric fields in anisotropic single-mode fibers can be repre-
/
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sentecl as E = A (z)el + B(z)ez with two orthonormalized ?’ y
eigenfunctions el and ez, When coupling coefficients Nij are

.&

a2+!

independent of z in a particular coordinate system, the field b;

amplitudes A(z) and B(z) can be expressed by A(z) = Ai exp
al SS’

(-~~jz) and B(z)= Bi exp (-j~iz), where

‘\ +2 -F
. ;1,- x

.--0 ,
Pi “ (*) [(~11 +~zz) * {(!V1l - ~22)2 + 12fv1212}1’21 -’%2 ‘,..-

(i=l,2) (1) \

and I ‘!

B. 2N12 Fig. 1. Schematics of two eigenpolarization modes. ai and &i denote

; = (N,, - N22) + {(N,, - N, Z)’ + 12N,’ 1’}’/’
the semimajor and semiminor axis lengths, respectively. Vi indicates
the orientation of major axis for each polarization ellipse with respect

(i= 1, 2). (2) to the fixed x axis.

The index i = 1 (i= 2) corresponds to the upper (lower) sign

in (1) and (2). The fli and Bi/Ai indicate mathematical eigen-

values and eigenfunctions, respectively. It has been shown

that the eigenstate has a physical significance incorporated

with polarization behavior [7]. These eigenstates will be called

eigenpolarization modes hereafter. Birefringence 8/3 or prop-

agation constant difference betwen the two eigenpolarization

modes is defined by

ap=p~ -pz = [(NII -N.2’)’ +12N1’12] i/’. (3)

ties of two eigenpolarizations are identical with each other.

2) The major axes of the polarization ellipses are mutually per-

pendicular. 3) The endpoints of their electric vectors rotate

oppositely. 4) Ellipticity of the eigenpolarization modes de-

pends on perturbations applied to the single-mode fiber [10].

C Vector Representation for Eigenpolarization Modes

Let the unit vectors along the fixed x and y axes bee. and

eY, respectively. A pair of vectors for eigenpolarization modes

are represented by

B. Complex Representation of Eigenpolarization Modes el = .XeX + YeY

Assume that coupling coefficients Nll and N22 are real, and ez = -Y*eX +X*e (8)
N12 is a complex value defined by N1’ = NF + jNi. The states

Y

of two eigenpolarizations are represented as where

{2” $2 +jn2 = E2y/E2x = (t; + ni)’/2 w [N 1 + fl)l Here, each vector ei is normalized so as to satisfy

(4) lei12 = IX12 + IY12 = 1 (lo)

with

Here, the EiX and Ei~ are electric components in Cartesian

coordinate.

Fig. 1 illustrates the shape of two eigenpolarization modes

schematically. It can be found that two major axis angles ~i of

the polarization ellipses satisfy

42 “*I + rn(7r/2) (m: integer) (5)

with the help of the standard text [11] and (4). This implies

that the principal axes of two eigenpolarization ellipses are

parallel or perpendicular to each other. Ellipticity of the

polarization is defined by the ratio of the semiaxes as

tan Xi= bi/ai (i= 1, 2). (6)

For two eigenpolarization ellipticities one obtains

tan X2 = - l/tan XI. (7)

The minus sign indicates that two eigenpolarizations rotate in

opposite directions. The inverse relation between two polari-

zation ellipticities means that the major axes of the two polari-

zations are perpendicular to each other.

In summary, two eigenpolarization modes, which belong to

different eigenvalues, have the following featu~es. 1) Elliptici-

and fulfills an orthogonal relation: el “ e; = O and e~ “ e’ = O.

The asterisk indicates complex conjugation.

D. Expansion of Elliptically Polarized Light in Terms of

Eigenpolarization Modes

An arbitrary incident elliptically polarized light Eis expanded

into a pertinent combination of two eigenpolarization mode

vectors el and e2. Thk can be shown as

E= E1el +E2e2,

= (EIX - E2 Y*)eX + (El Y+_!72X*)eY (11)

where El and E2 stand for the expansion coefficients. inci-

dent polarization components can be expressed by

EY/EX = (tan a) exp (j8). (12)

Here, tan a is the incident field component ratio and 8 is the

phase difference. Comparison of(12) with (11) leads to

,El,2 = IX12 + I Y12 tan’ a + 2 Re [XY* (tan a) exp (j~)]

. I+tan’a

,E212 = I Y12 + 1X12 tan’ a -2 Re [XY* (tan a) exp (j8)]

1 + tan2 a

(13)

where Re indicates that the real part of the square bracket is
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to be taken. The incident light power is normalized to satisfy

IE12 = 1.

Polarization ellipticity x and major axis angle ~ for the po-

larization ellipse are suitable parameters for relating to experi-

mental data. Parameters a and 6 presented in (12) are related

with x and t) as

[ 1ll/cos 21)- ICOS2XI 1/2
a = arctan

11/cos2*l+lcos2xl

8 = arccos
[

Ices 2x/cos 2i 1’- Ices 2X12

11/cos 21j12 - Ices 2X1’ 1
(14)

(15)

by solving usual results [11] reversely. For linear polarization

incidence, namely x = O, a is reduced to linear polarization

angle ~ with respect to the x axis.

III. DEGREE OF POLARIZATION

The mechanism explaining degradation in the degree of po-

larization will be outlined first. An arbitrary incident elliptical

polarization is expanded into a proper combination of two

eigenpolarization modes, as shown in (11). The two eigen-

polarization modes propagate at different group velocities

from each other. Even when the ideal phase compensation is

carried out at the ilber output, the two eigenpolarizations
cannot be made a linear polarization at the same time, giving

rise to a spurious orthogonal polarization component.

The degree of polarization P is defined by the ratio of polar-
ized component intensity lPO1 to total intensity ~tot. The de-

gree of ~olarization can be expressed, with the aid of coherency

matrix J, as [11]

P = IPO1/ItOt = [1 -4 (det .?)/(tr ;)2 ] 112. (16)

Here, det and tr denote the determinant and trace, respectively.

The degree of polarizati~n is ind~pendent of choice of coordi-

nate system, since det .J and tr J remain unchanged with re-

spect to a transformation in coordinates. Coherency matrix

~ is defined by

()JEt7 Jol?={EEO=
Jvt~Jm

(17)

where $ and q represent the components for an arbitrary co-

ordinate system. The dagger indicates Hermitian transpose

and the angle bracket implies time average. When a field is

stationary and ergodic, the ensemble average is replaced by the

time average. The field components of E can be represented in

terms of a complex analytic signal [11]. Analytic signal V(t)

is expressed as

V(t)=2
J“

u(u) exp (jut) dcd. (18)
o

Amplitude spectrum U(U) is represented, by means of Fourier

transform, as

[rV(t) exp (-10 t) d; LJ20
u(cd)= _@ (19)

Lo; 6.) <0.
The incident light is assumed to be quasi-monochromatic.

Column vector EO of incident light can be represented by

()Vo$(t)
E. =

Von(t)

with

(20)

Here, tan a stands for the field amplitude ratio of q to ~ com-

ponents and 8 denotes the phase difference. The factor 1/(1 +

tan2 ci)l/2 is introduced to normalize the incident light power.

Input light power 10 can be evaluated as

10 =tr(Eo ‘E$)=SO (22)

with

Jso-z m[U(U)12(k). (23)
o

In deriving (23),(18),(19), and(21) were employed.

Any incident elliptically polarized light E. is split into two

eigenpolarization mode vectors, el and ez, as shown in (1 1).

The envelope of the fields is essential to explain the polariza-

tion degree deterioration. The vector components for two

eigenpolarization modes can be written as

where

. exp [j(co - Uo) {t - (d~l/du)z}] da

(24)

e1n(t)=Y”2 J“u(u)
o

e2g(f)=-Y*.2 J“V(6))
o

J
.

e2n(t) =X* “ 2 v (0)
o

. exp [j(ti - coo) {t - (d~2 /dm)z}] d~. (25)

Here, X and Y are the field components of the mode 1, as

shown in (9). The pi(u) indicates propagation constant for

each mode. It is assumed that the spectral spread of the light

source is sufficiently smaller than central angular frequency

U.. Assuming that total optical power is preserved, even after

splitting into two eigenpolarization modes, one obtains

1/3,12+IE*12=1. (26)
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Here, the power immediately after incidence on the fiber was

evaluated by using eigenpolarization mode components in

(25) with z = O and employing a normalization relation in

(lo).
The coherency matrix elements at the fiber output can be

represented by

Jtg =(lli’lelg +f72e2g 12)

.JVq =(1131eln +-E2e2n 12)

Ygn = Y:g = <(E1 elt +-EZ ezg) (El eln +-% ezn)*). (27)

Fiber output optical power If can be presented by

lf=tr?=SO (28)

by making use of (1 O) and (26). Th~optical power is also con-

served at the fiber output. The det ~ at the output is obtained

as

det ~= (SO - ISI 12) IIi’l 12IE212 (29)

with

J
Sl=z m IU(U)12 exp [j(m - q)hgz] da. (30)

o

Here, tiI-g stands for the polarization dispersion or the group

delay difference between two eigenpolarization modes and is

defined by

(31)

In the above equation, c is the light velocity in free space, k is

the vacuum wave number, and 6# is the birefringence defined

by (3). Parameter SI depends on the light source spectral

distribution, fiber polarization dispersion, and fiber length.

The degree of polarization for anisotropic single-mode fibers

is obtained, by substitution of (28) and (29) into (16), as

P= [1 -(1 - 1712) (41E1121G12)]112 (32)

with

y=s, /so. (33)

In (32), (4IE’I12lh’212 ) and Iy I depend on the incident condi-

tion and light source coherency, respectively. When only one

eigenpolarization mode is excited at the fiber input, the de-

gree of polarization P = 1 is always maintained during fiber

propagation under idealized conditions. This is due to the fact

that autocorrelation functions for each eigenpolarization

mode satisfy

(eigf&)
17f; l= . 1 (i= 1,2). (34)

<(leig 12) (leiq 12)

Coherency is perfectly kept between intramodal components

On the other hand, the degree of polarization P takes the

minimum value IYI for equally split powers: I.EI 12 = 113212=

0.5. For mutual correlation functions between two eigen-

polarization modes

‘ei{i} ‘T{i})
~(lei{g}12)(lej{;}12)

=1-y[ (i#j) (35)

holds. Here, { } implies either of the components is to be

chosen. When absolute value of the mutual correlation func-

tion approaches unity, the degree of polarization also tends

toward unity.

Mutual correlation function y is connected with the light

source spectral intensity IV(Q) 12 by Fourier transform, as can

be found from (30). The T value is given by

y = sin (6u “ 8Tg .z)/(8u . ti~g . z) (36)

for a rectangular source spectrum with spectral width 2i5ti and

central angular frequency @o. This functional form is the

same presented by Rashleigh et al. [8]. Let 2 “ C3U be the full

width at half the maximum intensity, hereafter. The condi-

tion U. >>8 u is assumed throughout this paper. For a Gauss-

ian spectrum defined by Iu(co) 12 = exp [-(in 2){(Q - uo)/

8m}2 ], whose profile has been observed in a gas laser [12],

we have

(37)

For a Lorentzian spectrum defined by IU(U) 12 = 8c02/[(co -

UO )2 + &02], whose line shape has been demonstrated in a

semiconductor laser [13],

~= exp [-(8u “ 8~g “z)] (38)

is obtained. These three kinds of ~ are real values depending

on the product 6U “ ~rg “ z alone.

Fig. 2 compares with the mutual correlation function values

for the above three shapes with a single spectral peak. In the

neighborhood of x ~ sa “ tirg sz = O, a high coherency is kept

for rectangular and Gaussian spectra, but a rapid degradation

in coherency appears for a Lorentzian shape. Values of x

giving T = 0.9 are 0.79, 0.54, and 0.11, respectively, for rec-

tangular, Gaussian, and Lorentzian shapes. For example, x =

0.001 is obtained for tim = 1 GHz, ~~g = 1 ps/km, and z = 1

km.

Consider a light source which has two spectral intensity peaks

with central frequency spacing US and peak intensity ratio l$.

When a spectral distribution is represented by addition of

Gaussian functions: Iu(u) 12= exp [-(In 2) {(u - tiO)/8co 1}2 ]

+ Is exp [-(in 2) {(u - UO - co~)/i3coz}2 ] with the spectral
half widths, tia ~ and 6U2, the mutual correlation function is

given by

(39)

of one eigenpolarization mode. When Lorentzian shapes are prescribed as Iv(w) 12= 8w; /
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Polarization ellipticity of eigenpolarization modes in twisted
;lliptical core fibers. Ke and @t denote the core ellipticity effect and
fiber twist rate, respectively. a - GC/n = 0.074.

Vector components for the eigenpolarization modes, cor-

responding to (9), can be described as

x = [Ke + {K: +(0, - Kt)’}’/’NpNp

y = j(ot - @/~p

IVp =~ [/(: +(o~- Kt)2 +Ke{K: +(@t - Kt)2}1/2] 1/2.

(43)

The optical powers for & and q components are given by l’g =

IX1’ and Pn = IY12. For a sufficiently small twist rate, these

powers are approximated by

Pi s 1- (;) (@,/Ke)’ { 1- (GC/rz)}2

Pn x (t) (@t/K.)’{ 1- (GC/n)}2 (WK. <<1) (44)

to the second order in (@t/Kc). On the other hand, when the

twist rate @f is much larger than Ke,

P: a (~) [1 + {1 + (G@z)}/(@t/Ka)]

Pn R (~) [1 - {1 + (@+z)}/(@t/Kc)] (@t/~e >> 1) (45)

hold to the second order in (K./@t).

Fig. 6 illustrates optical powers for $ and ~ components as

functions of the ratio @t/Kc. P; % 0.946 is obtained even

when g!It/Ke = 0.5, since eigenpolarization modes are approxi-

mated with linear polarizations for @t/Kc <<1. When fiber

twist rate ~t by far exceeds K., optical powers of eigenpolari-

zation modes are distributed almost equally in the ~ and q

axes. Approximate values given in (44) show a relative error

of about 1 percent at #Jt/Ke = 0.5, while those in (45) produce

an about 4 percent error at @t/Kc = z.

Polarization dispersion is obtained as [9], [15]

&g= ?&) [f(e/{K: + (@t - Kt)2}1/2]

@) ..52. (L@) [m(r))]

ck G(u) “
(46)

Polarization dispersion 8T$J indicates a parameter caused by

the core ellipticity effect alone. Polarization dispersion 8Tg

tends towards zero with increasing twist rate $t because the

birefringence due to fiber twist hardly depends on the wave-

length.

INITIAL POLARIZATION AFTER TRANSMISSION

STATES
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Fig. 5. Polarization evolution of eigenpolariz@ion modes classified by

the magnitude of core ellipticity effect Ke and fiber twist rate@
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Fig. 6. Optical power distributed along rotation coordinates, g and ~,

for eigenpolarization mode. Broken curves indicate approximate
values given in (44) and (45). a ~ GC/n = 0.074.

When elliptically polarized light, represented by En/E$ =

(tan a) exp (jti), is incident on the fiber, expansion coeffi-

cients for two eigenpolarization modes are given by

,E112 = X’ + IY12 tan’ f.Y+2Xl Yl tancl. sins ~

1 + tan7 w

IE, 12=
IY12 +X2 tan2 a- 2XIYI tan a” sin~

I+tan’cs “
(47)

The component power ratio depends on the incident polarized

state and ratio (@t/Kc).

The degree of polarization can be obtained by inserting (43),
(46), and (47) into (32). Fig, 7(a) and (b) show the degree of

polarization P for linearly and circularly polarized light excita-

tions, respectively. This figure illustrates the value of P for

three kinds of light source spectral functions, presented in

(36)-(38). For the linear polarization excitation, P takes the

minimum value near a particular ratio q5t/Ke and is raised to

P = 1 with leaving its minimum due. The ratio @f/~, giving
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Polarization ellioticity of ei~enuolarization modes in twisted.- -.
~lliPtiCA core fibers. Ke and @tdenote the core ell.ipticity effect and
fiber twist rate, respectively. Q = GC/n = 0.074.

Vector components for the eigenpolarizatiorr modes, cor-

responding to (9), can be described as

X = [Ke + {K: +(@t - Kt)2}1j2]/~p

y = ~(f% - Kf)/fvp

~p =@ [K: +(@t- Kt)2 +Ke{K: +(@t - Kt)2}1/2] 1/2.

(43)

The optical powers for & and ~ components are giyen by ~g =

1X1’ and~n = IY12. For a sufficiently small twist rate, these

powers are approximated by

P&s 1- (+) (@t/Ke)2 { 1- (GC/n)}2

Pv a (~) (@~/Ke)2{ 1- (GC/n)}2 (w% <<1) (44)

to the second order in (r$f/Ke). On the other hand, when the

twist rate @t is much larger than Ke,

Pg ~ (~) [1 + {1 + (GC/n)}/(@t/~e)]

Pv s (*) [1 - {1 + (Gc/~)}/(A/~e)l (@t/K,>> 1) (45)

hold to the second order in (Ke/@t).

Fig. 6 illustrates optical powers for .$ and ~ components as

functions of the ratio q5t/Ke. Pt z 0.946 is obtained even
when @JKe = 0.5, since eigenpolarization modes are approxi-

mated with linear polarizations for @t/Kc <<1. When fiber

twist rate @t by far exceeds Ke, optical powers of eigenpolari-

zation modes are distributed almost equally in the & and n

axes. Approximate values given in (44) show a relative error

of about 1 percent at @t/Kc = 0.5, while those in (45) produce

an about 4 percent error at @t/Kc = 2.

Polarization dispersion is obtained as [9] , [15]

&g= 67$) [Ke/{K~ + (@t - Kt)2}1/2 ]

&p .5. (G@)) [uG(u)]

ck G(u) “
(46)

Polarization dispersion c$~~e)indicates a parameter caused by

the core ellipticity effect done. Polarization dispersion 6~g

tends towards zero with increasing twist rate @t because the

birefringence due to fiber twist hardly depends on the wave-

length.
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Fig. 6. Optical power distributed along rotation coordinates, $ and q,
for eigenpolarization mode. Broken curves indicate approximate
valuesgiven in (44) and (45). a = GC/n = 0.074.

When elliptically polarized light, represented by Eq/E6 =

(tan LY)exp (78), is incident on the fiber, expansion coeffi-

cients for two eigenpolarization modes are giyen by

,~112=X2+ lY12tan2& +2 Xl Yl tana .sin~ ~

1 + tanz a

,fi212 = IY12 +X2 tan2 a- 2XIYI tana “ sin~

1 + tan2 a
(47)

The component power ratio depends on the incident polarized

state and ratio (@t/rte).

The degree of polarization can be obtained by inserting (43),
(46), and (47) into (32). Fig. 7(a) and (b) show the degree of

polarization P for linearly and circularly polarized light excita-

tions, respectively. This figure illustrates the value of P for

three kinds of light source spectral functions, presented in

(36)-(38). For the linear polarization excitation, P takes the

minimum value near a particular ratio @t/Kc and is raised to

P = 1 with leaving its minimum value. The ratio @t/K, giving



340 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 4, APRIL 1982

1.0 .,,, 1 . . . . . . . . . . ...’.’’.’””’””’’””””-
. . . . . . . . . . . . . . ...

~ ,,, .. .

,, .....”.”:.>-
,\ --~’,. ~ - ,...

\ .- _-J- ...’
\

, ...”5
\
\. ..” ----
. . . . .. -.--

---

‘\ ~-
..------

SINGLE PEAK SPECTRA

~~~~~~~~~~: RECTANGULAR

LINEAR POLARIZATION — : GAUSSIAN

INCIDENCE ‘--- : LORENTZIAN

o I , 1 # I I
o 2 4 6 8 10

f$tl Ke

(a)

1.0 - .. ... . . . . . ...’’’’””””””
,, ... ..

a ““’””’ 1
CIRCULAR POLARIZATION

z
o INCIDENCE

F

s

z ,.

SINGLE PEAK SPECTRA

~~~~~~~~~: RECTANGULAR

— : GAUSSIAN

‘---: LORE NT ZIAN

o 1 , , I ) 1 1 I , I

o 1 2 3 4 5

+fl Ke

(b)
Fig.7. Degree of polarization for linear and circular polarization inci-

dences as a function bf theratio@t/Ke. SPectral functions are Pre-
sented in (36)-(38). a= GC/n ‘0.074. (a) Linearly polarized light
incidence. (b) Circularly polarized light incidence.

th$a minimum~ increases with aparameter 8m”8~$). z. If

the spectral halfwidth 8CJ is identical for the three spectral

shapes, the rectangular sltape shows a larger ~value than the

Gaussian and Lorentzian shapes.

When circular polarization is launched, as shown in Fig. 7(b),

the P value increases monotonically with ratio @J~~. The

tendency of the P value for the three spectral shapes is similar

to that in Fig. 7(a). When the fiber twist effect predominates

over the core ellipticit y effect, the P value tends toward unity

for any incident polarized state.

The achievement of P = 1 appears near @t/Kc = O for the

linear polarization incidence and at a sufficiently large q5t/Ke

for the circular polarization, as shown in Fig. 7(a)’ and (b).

This phenomena can be explained by the fact that the eigen-
polarization modes are linear polarizations for an untwisted

fiber and are circular polarizations for a strongly twisted fiber.

The convergence to P = 1 at large &/Ke reflects that polariza-

tion dispersion 87g, between the two eigenpolarization modes,

approaches zero with increasing @t/Kc. The lower P value for

Lorentzian spectral shape results from the fact that the Lo-

rentzian shape shows a large tail in the optical frequency

domain.

Lx (degree)

Fig. 8. Degree of polarization in an elliptical core fiber as functions of
mutual correlation function -y and incident polarized state.

In particular, the degree of polarization in an elliptically

deformed core fiber can be represented as

P= [1 - (1 - lT12)sin2 (2&)]l/2 (48)

for an incident condition givenin(12). Equation (48) implies

that the P depends on incident electric component ratio tan a

but not on phase difference ti. Fig. 8 shows the degree of

polarization as functions of the mutual correlation function ~

and incident polarized state. The P value takes the minimum

value, which equals IT I, at a = 45°.

For linear polarization incidence, a agrees with linear polari-

zation angle J with respect to the x axis. When incident light

is linearly polarized along the x or y axis, namely IJ = 0° or

90°, degree of polarization P = 1 is always preserved, in spite

of incident light spectral shape, polarization dispersion, and

fiber length. This fact is the basis of usual single-polarization

maintaining fibers, which have asymmetrical index profiles and
are uniaxially stressed. When a linear polarization, with its

orientation IJ’i = 45°, is incident on a fiber and light source

spectral shape is rectangular, (48) reduces to the previous

result [8] .

Equation (48) holds not only for an elliptical core fiber but

also for a general linear retardation fiber, if polarization disper-

sion is appropriately chosen for each fiber.

V. CONCLUSION

The degree of polarization in anisotropic single-mode optical

fibers has been formulated in terms of light source spectrum

and fiber parameters with the aid of a coherency matrix. The

deterioration mechanism in the polarization degree is based on

the assumption that an arbitrary incident polarized light is
split into two separate eigenpolarization modes, which propa-

gate at different group velocity values.

When only one of the eigenpolarization modes is launched

at the fiber input, degree of polarization P = 1 is always

achieved. On the other hand, when equal power is excited

in two eigenpolarization modes, the degree of polarization

is minimized. The minimum value depends on mutual correla-

tion function y = ~1 /~o between the two eigenpolarization

modes. The -y depends on light source spectral shape, fiber

polarization dispersion ti~g and fiber length z. Usually, the

degree of polarization P is kept high for rectangular and Gauss-

ian spectral functions, whereas P is rapidly reduced for a
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Lorentzian shape, provided that the spectral halfwidths are

identical.

The eigenpolarization modes and the degree of polarization

for a twisted elliptical core fiber have been studied as an

example of anisotropic fibers. Ellipticit y and principal axis

orientation for the eigenpolarizations are determined by the
fiber core ellipticity and twist rate. When a sufficiently large

twist is applied, the degree of polarization amounts to unity

for any incident polarized state. This is due to the polariza-

tion dispersion, between the two eigenpolarization modes,

tending toward zero with increasing fiber twist.
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